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Abstract: In this study, visible and near infrared hyperspectral imaging technique was used to predict canopy leaf nitrogen 

content (CLNC) of rice in cold region. Canopy hyperspectral images of rice were acquired at tillering, jointing and heading stage, 

respectively. Original spectra was extracted using ENVI5.0 software, and leaf nitrogen content was obtained by chemical 

analysis method. 5 pre-processing methods of savitzky-golay smoothing (SG), multiplicative scatter correction (MSC), standard 

normal variate (SNV), first derivative (FD) and second derivative (SD) were used to eliminate unexpected noise. After 

comparing the performance of PLSR models based on spectra of full wavelengths after pre-processing, SG combined with FD 

had the best performance for eliminating the noise interference and improving the performance of models. In order to further 

simplify and enhance the models, 3 variable selection methods of successive projections algorithm (SPA), uninformative variable 

elimination (UVE) and competitive adaptive reweighted sampling (CARS) were used to select the characteristic wavelengths, 

and partial least square regression (PLSR) and extreme learning machine (ELM) were used to establish prediction models. After 

comparing the performance of PLSR models and ELM models, CARS could effectively select the wavelengths that had strong 

information and were not sensitive to external disturbance factors, and the nonlinear ELM model was more suitable for 

predicting CLNC of rice in cold region, the specific values of RC
2
 and RP

2
 of ELM models based on CARS were 0.906 and 0.888 

for tillering stage, 0.903 and 0.892 for jointing stage, and 0.894, 0.887 for heading stage, respectively. The results of this study 

could provide a reference for quantitative analysis of nitrogen content of rice using hyperspectral technology. 
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1. Introduction 

Nitrogen is one of the essential nutrients for rice growth and 

the most active factor in soil fertility [1, 2]. In certain range of 

nitrogen application, the nitrogen uptake, nitrogen utilization 

efficiency, traits and yield of rice will be improved with 

nitrogen application increased. However, if nitrogen application 

is excessive, it will lead to reduced nitrogen utilization 

efficiency, soil degradation, decreased rice yield and inferior 

grain quality, and may even cause ecological pollution. 

Therefore, it is very meaningful to realize the rapid diagnosis of 

nitrogen status of rice in order to rationally and accurately apply 

nitrogen fertilizer. Traditional nitrogen diagnostic methods are 

visual diagnosis, chemistry diagnosis and chlorophyll meter 

diagnosis. The visual diagnosis is intuitive, but it’s easy to 

cause confusion and misjudgment. The chemistry diagnosis is 

more accurate, but so much work is needed to do and the cost is 

high. The chlorophyll meter diagnosis can only quantitatively 

estimate nutritional content of specified leaf, which is difficult 

to reflect nutritional status of large areas of cropland [3-5]. 

Therefore, traditional diagnosis methods have been difficult to 

meet the actual demand of large scale rice production in time 

and space hyperspectral technology has the advantages of 

convenience, accuracy and environmentally friendly, and has 
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become one of the most effective techniques for crop nutrition 

diagnosis. At present, there are many research results in this 

field, involving grain crops [6], fruit trees [7], vegetables and so 

on. In terms of nitrogen nutrition diagnosis of rice, also made a 

lot of research results. Tian found that the ratio vegetation index 

constructed by 553 and 537 nm had a good contribution to 

estimating leaf nitrogen content of rice [8]. Chu used the ratio 

vegetation index constructed by 770 and 752 nm to well predict 

nitrogen accumulation of rice leaf [9]. Yu analyzed the laws of 

nitrogen content and canopy spectra of rice under different 

nitrogen levels, and found that the optimum multiple narrow 

band reflectance (OMNBR) model established by maximum R
2
 

improvement method (MAXR) could improve the accuracy for 

predicting nitrogen content [10]. Qin believed that the linear 

model constructed from the ratio of the first derivative of 738 

and 522 nm selected by contour of determination coefficient 

was the optimal prediction model for nitrogen content of rice 

[11]. Similar to the above studies, scholars mostly used 

sensitive wavelengths or vegetation indices constructed by 

sensitive wavelengths to establish the simple linear or nonlinear 

models to predict nitrogen content of rice. The advantages of 

this method are simple and intuitive, computing fast and easy to 

implement. However, the disadvantages are that the accuracy is 

generally low, the anti-interference ability is poor, and the 

models in different studies are quite different. At present, there 

are few studies on the use of various pre-processing methods to 

filter original spectra, the use of multiple variable selection 

methods to extract characteristic wavelengths, and then to 

establish the higher precision linear and nonlinear models. As 

the raw spectra obtained by hyperspectral technique usually has 

the obvious noise and contains a large amount of irrelevant 

information that will weaken the performance of models, 

especially the canopy spectra collected in the cropland [12]. 

Therefore, it is necessary to carry out the elimination of 

uninformative variables and the selection of key variables 

before using hyperspectral data to quantitatively analyze 

nitrogen content of rice. Meanwhile, some new studies have 

shown that the nonlinear models had a more pronounced 

advantage in quantitative analysis of plant nutrition than the 

linear models [13]. Therefore, it is very meaningful to establish 

the nonlinear models to predict nitrogen content of rice. In the 

existing studies, there are also few studies on hyperspectral 

monitoring of nitrogen content of rice in cold region of 

northeast China. Especially, the monitoring periods, indicators 

and models under the canopy scale are still lack of systematic 

research. Heilongjiang Province, located in the northeastern 

part of China, is not only the largest growing area of rice in cold 

region, but also the most important commodity grain base in 

China. Using hyperspectral technology to monitor nitrogen 

content of rice, to provide rich and comprehensive research 

results, which is of great significance to guarantee rice yield and 

quality. Therefore, the rice cultivated in Heilongjiang Province 

is selected as the research object in this study. On the basis of 

experiments with different nitrogen levels, the canopy spectral 

information of rice at tillering, jointing and heading stage was 

obtained by visible and near infrared hyperspectral imaging 

technique. The performance of various pre-processing methods, 

variable selection methods and modeling methods in predicting 

canopy leaf nitrogen content (CLNC) of rice was systematically 

compared, and then the optimal pre-processing method, 

wavelength selection method and modeling theory for 

quantitative analysis of CLNC of rice in cold region were 

obtained. 

2. Materials 

2.1. Experimental Design 

The field experiments were carried out in 2016 in the area 

of Harbin, Heilongjiang Province, as shown in Figure 1. 

The climate is medium-temperate continental monsoon, 

with very cold winters and warm summers. The annual 

average temperature and precipitation are 3-4°C and 500-800 

mm, respectively. The climatic characteristics are suitable for 

many field crops (e.g. rice, soybeans, wheat and corn), which 

have only one harvest per year, and the most widely planted 

crop in this area is rice. In this study, the experimental rice 

variety was Daohuaxiang, the major cultivar grown in 

Heilongjiang Province. The experimental soil was meadow 

paddy soil, organic matter content was 35.5 g·kg
-1

, total 

nitrogen content was 1.44 g·kg
-1

, effective phosphorus content 

was 51.8 g·kg
-1

, available potassium content was 111 g·kg
-1 

and pH was 6.30. The experimental field was designed with 

four replications and four nitrogen gradient treatments: N0 (0 

kg·ha
-1

), N1 (60 kg·ha
-1

), N2 (120 kg·ha
-1

), N3 (180 kg·ha
-1

), 

that were used to obtain a large range of nitrogen content. The 

individual plot size was 4 by 4 m. Other field management 

practices, such as irrigation, pesticide application, etc., 

followed local standard practices. 

 

Figure 1. Location map of study area. 
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2.2. Canopy Images Acquisition 

The canopy hyperspectral images of rice were captured 

with SOC710VP
®
HS-Portable (Surface Optics Corp., CA, 

USA). Its spectral range was 372-1 038 nm and resolution was 

4.68 nm. The canopy images were obtained between 10 a.m. 

and 14 p.m. local time under clear and cloudless conditions, 

on June 25th, July 15th and August 20th, corresponding to 

tillering stage, jointing stage and heading stage, respectively. 

Prior to the canopy images acquisition, calibration 

measurements were done with a white reference panel. When 

the images were captured, hyperspectral equipment was 

placed at a height of 1 m above the rice canopy, two positions 

were randomly selected to capture images in each plot, and 

two rice plants were contained in each image. Hyperscanner 

software (Surface Optics Corp., CA, USA) was used to 

complete the acquisition and transmission of hyperspectral 

images. The canopy hyperspectral images of rice at tillering 

stage under different nitrogen levels are shown in Figure 2. 

 

Figure 2. Canopy hyperspectral images of rice at tillering stage under 

different nitrogen levels. 

2.2.1. Nitrogen Content Measurements 

After the canopy images acquisition was done, the top 10 

leaves of each rice plant in captured images were cut off and 

put into a numbered sealed bags. All leaves were rinsed with 

water, put into the oven at 105°C for 30 min and dried at 80°C 

to constant weight, then crushed and digested with Kjeldahl 

method. Total nitrogen content of leaves was measured by 

AA3 flow analyzer (SEAL Analytical Corp., Norderstedt, 

Germany) according to indophenol blue method, and the 

average value of 10 leaves was taken as CLNC of the 

corresponding rice plant. 

2.2.2. Reflectance Measurements 

A total of 96 canopy images were captured at 3 growth 

stages, and the reflectance measurements were performed by 

ENVI5.0 software (Research Systems Inc., CO, USA). 5 

regions of interest (ROI) were selected for each rice plant, and 

the average value of reflectance was taken as the canopy 

reflectance of the corresponding rice plant. At tillering stage, 

64 sets of data were obtained. After removing 2 sets of 

abnormal data, 42 sets of data were selected randomly as 

calibration set, the rest were prediction set. In the same way, at 

jointing stage, 41 sets of data were selected randomly as 

calibration set, 20 sets of data were prediction set. At heading 

stage, 42 sets of data were selected randomly as calibration set, 

20 sets of data were prediction set. 

3. Methods 

3.1. Spectral Pre-processing 

In both spectroscopy and hyperspectral imaging, the spectra 

is often disturbed by various disturbances. For example, the 

path length of light transmission is usually affected by the 

thickness of sample, and the measured values are often 

affected by the physical properties such as particle size and 

distribution [14]. Spectral pre-processing was performed 

using Unscrambler software (Version 9.7, CAMO, Oslo, 

Norway). The purpose of spectral pre-processing is typically 

to eliminate the influence of light scattering, background noise, 

baseline shift, and random error caused by uncontrolled 

external factors [15]. In this study, 5 spectral pre-processing 

methods, namely savitzky-golay smoothing (SG), 

multiplicative scatter correction (MSC), standard normal 

variate (SNV), first derivative (FD) and second derivative (SD) 

were applied in 11 strategies, namely SG, MSC, SNV, FD, SD, 

SG-FD, SG-SD, MSC-FD, MSC-SD, SNV-FD and SNV-SD. 

SG can filter out the high frequency noise in spectral data, 

MSC is a transformation method used to compensate for 

additive and multiplicative effects and SNV is commonly 

applied to remove the variability caused by light scattering 

[16]. FD and SD are often used to remove background noise, 

baseline drift and enhance small spectral features [17]. In 

order to screen out the optimal pro-processing method from 

the above methods, PLSR was used to model and predict using 

the spectral data after various pre-processing methods. Then, 

the appropriate pre-processing method was selected according 

to the determination coefficient (R
2
) and root mean square 

error (RMSE) of calibration set and prediction set. 

3.2. Characteristic Wavelengths Selection 

Hyperspectral image data is characterized by its 

3-dimensionality with multicollinearity, redundancy among 

contiguous wavelengths, which make the data processing time 

consuming and could weaken the performance of models [18]. 

Therefore, the most informative wavelengths should be 

selected from the whole spectral range of samples to reduce or 

even eliminate redundancy, thus speeding up data processing 

and improving the efficiency of data analysis [19]. In this 

study, 3 variable selection methods, namely successive 

projections algorithm (SPA), uninformative variable 

elimination (UVE) and competitive adaptive reweighted 

sampling (CARS) were used for wavelengths selection in 4 

strategies, namely SPA, UVE, UVE-SPA and CARS. SPA, 

UVE and CARS are all typical variable selection methods for 

spectral analysis [20-22]. SPA selects the variables with 

minimally redundancy to solve the collinearity problems [23]. 

UVE selects the informative variables according to their 

stability calculated from PLSR regression analysis [24]. In the 
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calculation of CARS, the wavelengths with larger absolute 

regression coefficients of PLSR models are considered as 

good candidates and selected based on the principle of 

‘survival of the fittest’ from Darwin’s Evolution Theory [25]. 

In addition, besides the calculation of SPA based on full 

wavelengths, SPA is also commonly carried out after UVE 

calculation to select the variables that informative but no 

collinearity. 

3.3. Models Establishment and Evaluation 

The application of chemometrics in modeling spectral data 

is widely used and is considered as a standard procedure for 

establishing prediction models in the analysis of hyperspectral 

images [26]. In this study, partial least square regression 

(PLSR) and extreme learning machine (ELM) were 

respectively used to establish prediction models between the 

spectral data of samples and the corresponding CLNC. PLSR 

is a classic linear multivariate statistical analysis method that 

is widely used in stoichiometric modeling analysis. Its 

principle is to perform factor analysis on characteristic 

wavelengths matrix X and sample target matrix Y, decompose 

X and Y into multiple latent variables, and select the optimal 

latent variables by cross validation method for regression. The 

cross validation method can well verify the accuracy of 

models and whether they are supersaturated [27, 28]. ELM is 

a simple supervised learning algorithm for single-hidden layer 

feedforward neural network (SLFN), which randomly 

generates the connection weights between the input layer and 

the hidden layer, and the threshold of neurons in the hidden 

layer. In the training process, the uniquely optimal solution 

will be obtained, just by setting the number of neurons in the 

hidden layer. Compared with traditional computational 

intelligence techniques, ELM has proved to be an alternative 

in terms of generalization performance, learning speed, and 

computational stability [29]. After the models were 

established, the performance of models needed to be evaluated 

quantitatively to determine the merits and demerits of them. 

The determination coefficient of calibration set (RC
2
) and 

determination coefficient of prediction set (RP
2
) were the main 

criterion, the root mean square error of calibration set 

(RMSEC) and root mean square error of prediction set 

(RMSEP) were the auxiliary criterion. The best model should 

have high RC
2
, RP

2
 and low RMSEC, RMSEP. All prediction 

models development procedures were carried out with 

MATLAB R2014a (The Math Works, Inc., Massachusetts, 

USA). The main steps of CLNC prediction of rice from 

sampling to modeling is shown in Figure 3. 

 

Figure 3. Main steps of CLNC prediction of rice from sampling to modeling. 
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4. Results and Discussion 

4.1. Statistical Distribution of CLNC 

Table 1 shows the overall statistical distribution of CLNC 

of 62, 61, 62 samples of tillering, jointing and heading stage, 

respectively. The maximum, minimum and mean values of 

CLNC were 2.970, 2.460 and 2.711 at tillering stage, 3.080, 

2.590 and 2.817 at jointing stage, and 2.850, 2.500 and 2.659 

at heading stage, respectively. It can be seen that CLNC 

increased from tillering to jointing stage, and decreased 

obviously after jointing stage. The standard deviation for each 

growth stage was 0.136, 0.139 and 0.098, respectively. 

Table 1. Statistical distribution of measured CLNC. 

Growth stage Number of samples Maximum Minimum Mean Standard deviation 

Tillering stage 62 2.970 2.460 2.711 0.136 

Jointing stage 61 3.080 2.590 2.817 0.139 

Heading stage 62 2.850 2.500 2.659 0.098 

 

4.1.1. Comparison of Spectral Pre-processing Methods 

The canopy spectra of rice of each growth stage was treated 

by 11 pre-processing methods, respectively. The prediction 

models were established by PLSR, and the performance of 

models is shown in Table 2. The performance of PLSR models 

based on spectra of full wavelengths after different 

pre-processing methods was different, because not all 

methods were able to reduce the noise effects and improve the 

robustness of models. At tillering stage, the performance of 

PLSR models based on SG and SG-FD was better than model 

based on original spectra, the specific values of RC
2
 and RP

2
 

were 0.831 and 0.827 for the SG model and 0.848, 0.834 for 

the SG-FD model. The PLSR models based on SNV, FD and 

SG-SD also had higher RC
2
 values, but the Rp

2
 values were not 

as good as that of original spectra. In addition, the 

performance of models based on MSC, SD, MSC-FD, 

MSC-SD, SNV-FD and SNV-SD was not better than model 

based on original spectra. At jointing stage, the performance 

of PLSR models based on SG and SG-FD was also better than 

model based on original spectra, the specific values of RC
2
 and 

RP
2
 were both higher. Meanwhile, the regularity of 

performance of PLSR models based on SNV, FD, SD, SG-SD, 

MSC-FD, MSC-SD, SNV-FD and SNV-SD was the same as 

tillering stage. At heading stage, the PLSR models based on 

SG and SG-FD still performed better than model based on 

original spectra, but the performance of models based on other 

pre-processing methods was not better. Among them, the 

PLSR models based on FD, SD and SG-SD performed slightly 

better than MSC, SNV, MSC-FD, MSC-SD, SNV-FD and 

SNV-SD. 

Table 2. Performance of PLSR models for predicting CLNC based on different 

pre-processing methods. 

Growth 

stage 

Pre-processing 

method 

Calibration set Prediction set 

RC
2 RMSEC RP

2 RMSEP 

Tillering 

stage 

Original 0.829 0.063 0.817 0.067 

SG 0.831 0.063 0.827 0.065 

MSC 0.750 0.077 0.683 0.087 

SNV 0.851 0.059 0.727 0.083 

FD 0.852 0.059 0.816 0.067 

SD 0.823 0.064 0.764 0.077 

SG-FD 0.848 0.059 0.834 0.061 

SG-SD 0.845 0.059 0.796 0.070 

MSC-FD 0.720 0.081 0.676 0.088 

MSC-SD 0.701 0.084 0.655 0.090 

Growth 

stage 

Pre-processing 

method 

Calibration set Prediction set 

RC
2 RMSEC RP

2 RMSEP 

SNV-FD 0.720 0.081 0.689 0.087 

SNV-SD 0.700 0.084 0.688 0.089 

Jointing 

stage 

Original 0.833 0.057 0.811 0.062 

SG 0.843 0.055 0.816 0.061 

MSC 0.819 0.059 0.798 0.063 

SNV 0.841 0.056 0.794 0.062 

FD 0.835 0.058 0.801 0.062 

SD 0.825 0.059 0.785 0.069 

SG-FD 0.849 0.054 0.819 0.061 

SG-SD 0.835 0.059 0.793 0.064 

MSC-FD 0.790 0.066 0.767 0.068 

MSC-SD 0.787 0.065 0.754 0.069 

SNV-FD 0.790 0.065 0.764 0.068 

SNV-SD 0.785 0.065 0.753 0.069 

Heading 

stage 

Original 0.815 0.059 0.787 0.066 

SG 0.817 0.061 0.794 0.065 

MSC 0.679 0.080 0.563 0.095 

SNV 0.679 0.080 0.577 0.093 

FD 0.814 0.060 0.769 0.068 

SD 0.750 0.070 0.663 0.083 

SG-FD 0.846 0.055 0.807 0.063 

SG-SD 0.795 0.063 0.754 0.070 

MSC-FD 0.652 0.083 0.556 0.095 

MSC-SD 0.636 0.085 0.511 0.100 

SNV-FD 0.652 0.083 0.559 0.096 

SNV-SD 0.635 0.085 0.530 0.099 

From tillering stage to heading stage, compared the 

performance of SG, MSC and SNV, the PLSR models based 

on SG were the best, indicating that the noise of canopy 

spectra was mainly caused by the high frequency noise. The 

PLSR models based on SNV had higher RC
2
 values and lower 

RP
2
 values at tillering and jointing stage, lower RC

2
 and RP

2
 

values at heading stage, which indicated that the light 

scattering was really present in original spectra, but it was not 

the main factor that affected the performance of models. The 

PLSR models based on SMC with lower RC
2
 and RP

2
 values 

indicated that although the additive and multiplicative effects 

were compensated, the high frequency noise in original 

spectra was also amplified. Compared the performance of SG, 

SMC, SNV combined with FD and SD, the performance of 

models based on SG-FD, SMC-FD and SNV-FD was better 

than models based on SG-SD, SMC-SD and SNV-SD, 

indicating that FD was more suitable for the filtering of 

canopy spectra than SD. Meanwhile, the performance of 

models based on MSC-FD, MSC-SD, SNV-FD and SNV-SD 
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was not better than models based on single one pre-processing, 

indicating that the small spectral features enhanced by FD and 

SD contained some noise, so the noise was also amplified. In 

summary, at tillering, jointing and heading stage, SG and 

SG-FD had better performance in eliminating the noise 

interference and improving the performance of models. 

Meanwhile, the RC
2
 and RP

2
 values of models based on SG-FD 

were higher than that of models based on SG. Therefore, the 

best model to predict CLNC of rice should be based on SG-FD 

pre-processing method. Original spectra and spectra after SG 

and SG-FD are showed in Figure 4. 

 

Figure 4. Original spectra and spectra after pre-processing. (a) original spectra of tillering stage, (b) original spectra of jointing stage, (c) original spectra of 

heading stage, (d) spectra after SG of tillering stage, (e) spectra after SG of jointing stage, (f) spectra after SG of heading stage, (g) spectra after SG-FD of 

tillering stage, (h) spectra after SG-FD of jointing stage, (i) spectra after SG-FD of heading stage. 

4.1.2. Characteristic Wavelengths Selection 

After selecting the optimal spectral pre-processing method, 

SPA, UVE, UVE-SPA and CARS were used to select the 

characteristic wavelengths to reduce the number of input 

variables, improve the operation speed, and improve the 

accuracy and robustness of models. In the SPA calculation, 

after comparing the RMSEs of different candidate subsets of 

variables that were obtained by a sequence of projection 

operations, 30, 26 and 22 wavelengths which had the lowest 

RMSEs were selected as the characteristic wavelengths at 

tillering, jointing and heading stage, respectively. The number 

of these selected wavelengths, which was 23.43% of the 

number of full wavelengths at tillering stage, 20.31% at 

jointing stage and 17.18% at heading stage, respectively. In 

the UVE calculation, the distribution of stability values of all 

wavelengths was obtained, and the wavelengths with stability 

values outside the threshold line were defined as the 

characteristic wavelengths. 56, 51 and 57 wavelengths were 

obtained at tillering, jointing and heading stage, respectively. 

The number of these wavelengths was 43.47% of full 

wavelengths at tillering stage, 39.84% at jointing stage and 

44.53% at heading stage, respectively. Besides the calculation 

of SPA based on full wavelengths, SPA was also commonly 

carried out after UVE calculation to select the variables that 

informative but no collinearity [30]. In this study, this strategy 

was also applied, 16, 16 and 14 wavelengths were obtained at 

3 growth stages, respectively. After the UVE-SPA calculation, 

the information in original spectra was greatly compressed, 

the number of selected wavelengths was just 12.5% of full 

wavelengths at tillering stage and jointing stage, 10.93% at 

heading stage, respectively. At last, CARS was carried out to 

select the characteristic wavelengths based on the 

identification of wavelengths with higher absolute coefficients 

of PLSR models. 11, 10 and 10 wavelengths were selected at 

tillering, jointing and heading stage, respectively. The number 

of these wavelengths was just 8.59% of full wavelengths at 

tillering stage, and 7.81% at jointing stage and heading stage, 

respectively. The characteristic wavelengths of each growth 

stage selected by SPA, UVE, UVE-SPA and CARS are shown 

in Figure 5. 
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Figure 5. Characteristic wavelengths of each growth stage selected by SPA (a), UVE (b), UVE-SPA (c) and CARS (d). 

4.2. Establishment and Analysis of Models 

4.2.1. PLSR Models 

The characteristic wavelengths of each growth stage selected 

by the above methods were used to establish the new PLSR 

models to predict CLNC of rice, the results are shown in Table 

3. At tillering stage, the performance of PLSR models based on 

UVE, UVE-SPA and CARS were better than model based on 

full wavelengths, the specific values of RC
2
 and RP

2
 were 0.895 

and 0.879 for the UVE model, 0.863 and 0.860 for the 

UVE-SPA model, and 0.881, 0.871 for the CARS model. But 

the PLSR model based on SPA had lower RC
2
 and RP

2
 values 

than that of full wavelengths. At jointing stage, the PLSR model 

based on CARS performed better than model based on full 

wavelengths, the specific values of RC
2
 and RP

2
 were 0.886 and 

0.851. However, the performance of PLSR models based on 

SPA, UVE and UVE-SPA was not as good as full wavelengths. 

Among them, the PLSR models based on UVE performed 

slightly better than SPA and UVE-SPA. At heading stage, the 

regularity of performance of PLSR models based on SPA, UVE, 

UVE-SPA and CARS was the same as tillering stage. 

From tillering stage to heading stage, the performance of 

PLSR models based on SPA was not better than PLSR models 

based on full wavelengths, which indicated that even after 

filtering by SG-FD, some noise still existed in original spectra, 

which was non-colinear with the important spectral 

information. The noise existed in the wavelengths selected by 

SPA and the performance of PLSR models would be affected. 

Compared with PLSR models based on full wavelengths, the 

PLSR models based on UVE had higher RC
2
 and RP

2
 values at 

tillering and heading stage, lower RC
2
 and RP

2
 values at 

jointing stage, perhaps because during the elimination of 

uninformative variables, a small amount of useful information 

was also removed, which resulted in lower RC
2
 and RP

2
 values 

at jointing stage. Meanwhile, at tillering and heading stage, the 

PLSR models based on UVE performed the best, but the 

number of wavelengths was too large. After carrying out the 

SPA calculation on the wavelengths selected by UVE, the 

colinear variables were removed, and the number of 

wavelengths was significantly reduced, but the RC
2
 and RP

2
 

values of PLSR models also decreased slightly. Compared 

with SPA, UVE and UVE-SPA, the PLSR models based on 

CARS always had the better performance. The prediction 

effect of prediction set of each growth stage based on 

CARS-PLSR is shown in Figure 6. 

Table 3. Performance of PLSR models based on different wavelength selection methods for predicting CLNC. 

Growth stage 
Wavelength selection 

methods 

Number of 

wavelengths 

Calibration set Prediction set 

RC
2 RMSEC RP

2 RMSEP 

Tillering stage 

None 128 0.848 0.059 0.834 0.061 

SPA 30 0.842 0.060 0.826 0.062 

UVE 56 0.895 0.041 0.879 0.045 

UVE-SPA 16 0.863 0.048 0.860 0.048 
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Growth stage 
Wavelength selection 

methods 

Number of 

wavelengths 

Calibration set Prediction set 

RC
2 RMSEC RP

2 RMSEP 

CARS 11 0.881 0.044 0.871 0.046 

Jointing stage 

None 128 0.849 0.054 0.819 0.061 

SPA 26 0.845 0.055 0.770 0.069 

UVE 51 0.846 0.055 0.801 0.064 

UVE-SPA 16 0.837 0.059 0.793 0.065 

CARS 10 0.886 0.046 0.851 0.054 

Heading stage 

None 128 0.846 0.055 0.807 0.063 

SPA 22 0.843 0.054 0.801 0.059 

UVE 57 0.888 0.045 0.865 0.052 

UVE-SPA 14 0.854 0.051 0.831 0.055 

CARS 10 0.877 0.048 0.864 0.052 

 

Figure 6. Prediction effect of prediction set of tillering stage (a), jointing stage (b) and heading stage (c) based on CARS-PLSR. 

4.2.2. ELM Models 

Next, the selected characteristic wavelengths of each 

growth stage were used to establish the ELM models to 

evaluate the ability of non-linear models in predicting CLNC 

of rice, the results are shown in Table 4. When implementing 

the ELM algorithm, the number of neurons in the hidden layer 

ranged from 5 to 50 in increments of 5, and the number of 

neurons that achieved the best prediction results was chosen. 

After repeated training, the optimal number of neurons for 3 

growth stages was 15. At tillering stage, jointing stage and 

heading stage, the regularity of performance of ELM models 

based on SPA, UVE, UVE-SPA and CARS was consistent 

with PLSR models. Compared Table 3 and Table 4, the 

nonlinear ELM models were superior to the linear PLSR 

models in predicting CLNC, and the ELM models based on 

UVE, UVE-SPA and CARS all obtained better performance. 

This might be because, on the one hand, when the amount of 

nitrogen fertilizer changed, rice plants would undergo 

complex chemical changes, so there might be a nonlinear 

relationship between the spectral characteristics and CLNC. 

On the other hand, although the characteristic wavelengths 

were selected by SPA, UVE and CARS, which are the variable 

selection methods based on the linear analysis, there might be 

still non-linear information in the selected wavelengths. 

Compared the performance of different wavelength selection 

methods in Table 3 and Table 4, if SPA was used to select the 

characteristic wavelengths from original spectra directly, the 

performance of models established by these wavelengths was 

not ideal due to the influence of many external disturbances. 

UVE could select the wavelengths that had strong information 

and were not sensitive to external influencing factors, but the 

number of wavelengths was too large and the performance of 

models was unstable. By combining UVE with SPA, the 

number of characteristic wavelengths could be reduced to a 

minimum of 14, only 10.93% of full wavelengths, but the 

accuracy also declined. Compared with SPA, UVE and 

UVE-SPA, CARS could also effectively select the 

wavelengths that had strong information and were not 

sensitive to external influencing factors. The maximum 

number of the selected wavelengths was only 8.59% of full 

wavelengths, and the performance of PLSR models and ELM 

models established by these wavelengths was better, 

especially the ELM models. Therefore, the comprehensive 

evaluation showed that CARS-ELM could be used as an 

effective wavelength selection and modeling method for 

predicting CLNC of rice in cold region. The prediction effect 

of prediction set of each growth stage based on CARS-ELM is 

shown in Figure 7. 

Table 4. Performance of ELM models based on different wavelength selection methods for predicting CLNC. 

Growth stage 
Wavelength selection 

methods 

Number of 

wavelengths 

Calibration set Prediction set 

RC
2 RMSEC RP

2 RMSEP 

Tillering stage 

None 128 0.861 0.048 0.842 0.052 

SPA 30 0.832 0.056 0.819 0.059 

UVE 56 0.909 0.035 0.899 0.037 

UVE-SPA 16 0.878 0.044 0.871 0.046 
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Growth stage 
Wavelength selection 

methods 

Number of 

wavelengths 

Calibration set Prediction set 

RC
2 RMSEC RP

2 RMSEP 

CARS 11 0.906 0.035 0.888 0.041 

Jointing stage 

None 128 0.859 0.050 0.831 0.059 

SPA 26 0.843 0.055 0.765 0.068 

UVE 51 0.856 0.050 0.833 0.058 

UVE-SPA 16 0.849 0.053 0.817 0.061 

CARS 10 0.903 0.039 0.892 0.043 

Heading stage 

None 128 0.867 0.049 0.834 0.055 

SPA 22 0.838 0.054 0.799 0.060 

UVE 57 0.902 0.039 0.883 0.046 

UVE-SPA 14 0.874 0.048 0.857 0.052 

CARS 10 0.894 0.042 0.887 0.045 

 

Figure 7. Prediction effect of prediction set of tillering stage (a), jointing stage (b) and heading stage (c) based on CARS-ELM. 

5. Conclusions 

This study was conducted to evaluate the feasibility of 

using visible and near infrared hyperspectral imaging 

technology combined with multiple spectral pro-processing 

methods, different characteristic wavelength selection 

methods, linear and nonlinear models for the rapid and 

non-destructive prediction of CLNC of rice in cold region. In 

order to eliminate the noise influence and the redundant 

information, and then select the key variables to establish the 

higher precision linear and nonlinear models, 5 pre-processing 

methods of SG, MSC, SNV, FD and SD, 3 variable selection 

methods of SPA, UVE and CARS, and 2 modeling methods of 

PLSR and ELM were applied. The results of comprehensive 

comparison showed that, SG-FD was the optimal 

pre-processing method to eliminate unexpected noise and 

enhance the performance of models. CARS could effectively 

select the characteristic wavelengths that had strong 

information and were not sensitive to external disturbance 

factors, and the nonlinear ELM model was more suitable for 

predicting CLNC of rice in cold region. The results of this 

study could provide a reference for quantitative analysis of 

nitrogen content of rice using hyperspectral technology, and 

technical support for guiding the application of nitrogen 

fertilizer during the growth process of rice in cold region. 

Future research is needed to test the performance of models 

with more samples from different places and different 

varieties in Heilongjiang Province. Meanwhile, for the ELM 

model, the wavelengths selected by the methods used in this 

study may not be the optimal variables. How to develop the 

nonlinear variable selection methods will also be studied in 

the future. 

Acknowledgements 

The authors also would like to thank China postdoctoral 

fund (2016M601406) and Heilongjiang postdoctoral fund 

(LBH-Z15024) and Heilongjiang provincial innovative talent 

project (UNPYSCT-2018143) for financial support. 

 

References 

[1] Wu Q, Xia G M, Chen T T, et al. 2016. Impacts of nitrogen and 
zeolite managements on yield and physicochemical properties 
of rice grain. International Journal of Agricultural and 
Biological Engineering, 9 (5): 93-100. 

[2] He Y, Zhao C J, Wu D, et al. 2010. Fast detection technique and 
sensor instruments for crop-environment information: A review. 
Scientia Sinica (Informationis), 40 (S): 1-20. 

[3] Wang S W, Song Y Z, Zhang C L, et al. 2017. Hyperspectral 
estimation model for predicting canopy nitrogen content of rice 
in cold region of Northeast China. Journal of Northeast 
Agricultural University, 48 (4): 79-88. 

[4] Yu F H, Xu T Y, Cao Y L, et al. 2016. Models for estimating the 
leaf NDVI of japonica rice on a canopy scale by combining 
canopy NDVI and multisource environmental data in Northeast 
China. International Journal of Agricultural and Biological 
Engineering, 9 (5): 132-142. 

[5] Xue X Y, Tu K, Qin W C, et al. 2014. Drift and deposition of 
ultra-low altitude and low volume application in paddy field. 
International Journal of Agricultural and Biological 
Engineering, 7 (4): 23-28. 



34 Wang Shuwen et al.:  Estimating Canopy Nitrogen Content of Rice Using Hyperspectral Reflectance  

Combined with SG-FD-CARS-ELM in Cold Region 

[6] Wang R H, Song X Y, Li Z H, et al. 2014. Estimation of winter 
wheat nitrogen nutrition index using hyperspectral remote 
sensing. Transactions of the Chinese Society of Agricultural 
Engineering, 30 (19): 191-187. 

[7] Sun J, Cong S L, Mao H P, et al. 2017. CARS-ABC-SVR 
model for predicting leaf moisture of leaf-used lettuce based on 
hyperspectral. Transactions of the Chinese Society of 
Agricultural Engineering, 33 (5): 178-184. 

[8] Tian Y C, Gu K J, Chu X, et al. 2014. Comparison of different 
hyperspectral vegetation indices for canopy leaf nitrogen 
concentration estimation in rice. Plant and Soil, 376 (1-2): 
193-209. 

[9] Chu X, Guo Y J, He J Y, et al. 2014. Comparison of different 
hyperspectral vegetation indices for estimating canopy leaf 
nitrogen accumulation in rice. Agronomy Journal, 106 (5): 
1911-1920. 

[10] Yu K, Li F, Gnyp M L, et al. 2013. Remotely detecting canopy 
nitrogen concentration and uptake of paddy rice in the 
Northeast China Plain. ISPRS Journal of Photogrammetry and 
Remote Sensing, 78: 102-115. 

[11] Qin Z F, Chang Q R, Xie B N, et al. 2016. Rice leaf nitrogen 
content estimation based on hyperspectral imagery of UAV in 
Yellow River diversion irrigation district. Transactions of the 
Chinese Society of Agricultural Engineering, 32 (23): 77-85. 

[12] Yu F H, Xu T Y, Du W, et al. 2017. Radiative transfer models 
(RTMs) for field phenotyping inversion of rice based on UAV 
hyperspectral remote sensing. International Journal of 
Agricultural and Biological Engineering, 10 (4): 150-157. 

[13] Li X Q, Liu X N, Liu M L, et al. 2014. Random forest 
algorithm and regional applications of spectral inversion model 
for estimating canopy nitrogen concentration in rice. Journal of 
Remote Sensing, 18 (4): 923-945. 

[14] Bi Y M, Yuan K L, Xiao W Q, et al. 2016. A local 
pre-processing method for near-infrared spectra, combined 
with spectral segmentation and standard normal variate 
transformation. Analytica Chimica Acta, 909: 30–40. 

[15] Jia B B, Yoon S C, Zhuang H, et al. 2017. Prediction of pH of 
fresh chicken breast fillets by VNIR hyperspectral imaging. 
Journal of Food Engineering, 208: 57-65. 

[16] Helland I S, Nas T, Isaksson T. 1995. Related versions of the 
multiplicative scatter correction method for preprocessing 
spectroscopic data. Chemometrics and Intelligent Laboratory 
Systems, 29 (2): 233-241. 

[17] Shen F, Yang D T, Ying Y B, et al. 2012. Discrimination 
between Shaoxing wines and other Chinese rice wines by 
near-infrared spectroscopy and chemometrics. Food and 
Bioprocess Technology, 5 (2): 786-795. 

[18] Wu D, Sun D W. 2013. Application of visible and near infrared 
hyperspectral imaging for non-invasively measuring 
distribution of water-holding capacity in salmon flesh. Talanta, 
116: 266-276. 

[19] He H J, Sun D W, Wu D. 2014. Rapid and real-time prediction 
of lactic acid bacteria (LAB) in farmed salmon flesh using 
near-infrared (NIR) hyperspectral imaging combined with 
chemometric analysis. Food Research International, 62: 476–
483. 

[20] Wu D, Sun D W, He Y. 2014. Novel non-invasive distribution 
measurement of texture profile analysis (TPA) in salmon fillet 
by using visible and near infrared hyperspectral imaging. Food 
Chemistry, 145: 417-426. 

[21] Zhu N, Lin M H, Nie Y T, et al. 2016. Study on the quantitative 
measurement of firmness distribution maps at the pixel level 
inside peach pulp. Computers and Electronics in Agriculture, 
130: 48-56. 

[22] Zou X B, Zhao J W, Malcolm J W P, et al. 2010. Variables 
selection methods in near-infrared spectroscopy. Analytica 
Chimica Acta, 667 (1-2): 14-32. 

[23] Araújo M C U, Saldanha T C B, Galvão R K H, et al. 2001. The 
successive projections algorithm for variable selection in 
spectroscopic multicomponent analysis. Chemometrics and 
Intelligent Laboratory Systems, 57 (2): 65-73. 

[24] Cai W S, Li Y K, Shao X G. 2008. A variable selection method 
based on uninformative variable elimination for multivariable 
calibration of near-infrared spectra. Chemometrics and 
Intelligent Laboratory Systems, 90 (2): 188-194. 

[25] Li H D, Liang Y Z, Xu Q S, et al. 2009. Key wavelengths 
screening using competitive adaptive reweighted sampling 
method for multivariate calibration. Analytica Chimica Acta, 
648 (1): 77-84. 

[26] Huang L X, Zhou Y B, Meng L W, et al. 2017. Comparison of 
different CCD detectors and chemometrics for predicting total 
anthocyanin content and antioxidant activity of mulberry fruit 
using visible and near infrared hyperspectral imaging technique. 
Food Chemistry, 224: 1-10. 

[27] Iqbal A, Sun D W, Allen P. 2013. Prediction of moisture, color 
and pH in cooked, pre-sliced turkey hams by NIR hyperspectral 
imaging system. Journal of Food Engineering, 117 (1): 42-51. 

[28] Meng R F, Zhong J J, Zhang L F, et al. 2012. Ultrasonic 
concentration measurement of citrus pectin aqueous solutions 
using PC and PLS regression. International Journal of 
Agricultural and Biological Engineering, 5 (2): 76-81. 

[29] Liu Y, Xie H, Chen Y H, et al. 2016. Neighborhood mutual 
information and its application on hyperspectral band selection 
for classification. Chemometrics and Intelligent Laboratory 
Systems, 157: 140-151. 

[30] Wu D, He Y. 2014. Potential of spectroscopic techniques and 
chemometric analysis for rapid measurement of 
docosahexaenoic acid and eicosapentaenoic acid in algal oil. 
Food Chemistry, 158: 93-100. 

Biography 

Wang Shuwen, male, was born in 1975. He 

graduated from Harbin Institute of 

Technology with a doctorate in 2009. He was 

promoted to associate professor in 2010. At 

present, his interest is for agricultural 

information technology and intelligent 

measurement and control research. 

 

 


