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Abstract: The following paper proposes a novel Multiple Models Method for observer design to solve the problem of state and
parameter estimation of uncertain nonlinear time-varying parameters systems with unknown but bounded disturbance. Classically
speaking, an interval observer is a special class of observers that generates a bounded interval vector for the real state vector in
a guaranteed way under the assumption that the uncertainties are unknown but bounded; it gives an upper and lower estimate
for the system states at each time instant (determining a certain interval for the estimated state variations). Several approaches
have been developed and adapted to different kinds of models (linear, nonlinear, fuzzy, etc.). However, in the proposed approach,
the objective is not to design an interval observer, but rather a classical Luemberger observer, based on an interval multiple
model of the nonlinear system model. The novelty introduced in the paper is about proposing a new interval Multiple Models
representation of the uncertain nonlinear system. The observer’s gains are developed based on the Lyapunov stability theory
proving that the state and parameter estimation errors are stable and converge to an origin-centred ball of a given radius to be
minimized. The design conditions are formulated into linear matrix inequalities constraints, which can be efficiently solved. A
numerical example is given to illustrate the design and validate the performance of the interval observers.

Keywords: Uncertain Systems, Sector Nonlinearity Approcha, Interval Multiple Models

1. Introduction
Nonlinear behavior appears in several engineering problems

(mechanical, biological, biomedical, electrical, etc). Dealing
with nonlinear systems has a wide and various aspect in control
theory and goes from the modeling to the control, estimation
and implementation. Apart of the nonlinear complexity,
another difficulty for the system states design consists in the
structural model errors or uncertainties; i.e. how modelling
uncertainties is considered knowing that a major effect of these
modelling errors is the cause of the mismatch between the
model and the real behaviour of the system.

To overcome these difficulties, an alternative technique to
the classical observer consists in dealing with the uncertainties
and disturbances by determining certain upper and lower
estimates for the system states at each time instant, which
is known as set-membership or interval observers; i.e. set-
based state estimators/observers started another branch of

state estimation, where uncertainties are characterized by sets
instead of random variables [1–3].

The aim of this paper is to develop a new method, combining
the principle of set-membership interval observers with the
multiple model approach. A first contribution, presented in
a study is based on guaranteed bounds method [4]. It consists
of an auxiliary dynamic system providing an upper estimation
and a lower estimation for the solutions of the system
considered under the assumption that the initial conditions and
uncertain quantities are unknown but bounded. The mean
of the interval can be considered as the point-wise estimate,
whereas the interval width provides the admissible deviation
from that value. The basic idea is to compute the set of
admissible values for the state at each instant of time.

An Interval observer is a special class of observers that
generates a bounded interval vector for the real state vector in
a guaranteed way under the assumption that the uncertainties
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are unknown but bounded. Some of the basic concepts and
the main developments in the designs and applications of
interval observer for continuous-time, discrete-time (linear and
non-linear), fuzzy and switched systems may be found in the
following studies [5–10].

In the following paper, the considered approach is inspired
from the interval observers or set-membership observers but
quite different. Indeed, in the proposed approach, a step-by-
step methodology to design an observer based on Multiple
Model Structure to solve the problem of state and parameter
estimation for uncertain nonlinear time-varying parameter
systems will be given.

The idea is not to design an interval observer (with an upper
and lower bound), but a classical Luemberger observer, based
on an interval multiple model of the nonlinear system model.

It is important to highlight that in the following article, the
resolution technique in order to deduce the observer gains is
based on the Linear Matrix Inequality resolution. These LMIs
constraints are deduced from a classical Lyapunov stability
theory. One can find in the literature several contributions
based on the LMI/Lyapunov development methods where the
observation gain that guarantees both stability and positivity of
the interval estimate errors is synthesized by solving a Linear
Matrix Inequality (LMI) feasibility problem [14–17].

To illustrate the basic ideas, the development for the MM

system with measurable premise variables is first detailed.
The general case of nonlinear time-varying parameter systems
where the parameters are inaccessible is then introduced. The
stability conditions of the estimation errors are established and
the reachable regions of convergence are characterized and
optimized. The observer gains are derived by solving an LMI
optimization problem obtained from the Lyapunov theory.

2. General Multiple Models Form

2.1. Multiple Models Representation of Nonlinear Systems

Consider a dynamic time-varying nonlinear system
described by the following state equations:{

ẋ(t) = f(t, x, u, θ)
y(t) = g(t, x, u, θ)

(1)

where x(t) ∈ Rnx is the system state, u(t) ∈ Rnu is the
input, y(t) ∈ Rm is the system output and θ(t) ∈ Rn a time-
varying parameter vector. f(.) and g(.) are vector functions of
dimension Rnx and Rm respectively.

The nonlinear dynamic systems is then expressend into a
convex combination of linear submodels:


ẋ(t) =

r∑
i=1

2n∑
j=1

µi(ξ(t))µ̃j(θ(t))(Aijx(t) + Biju(t))

y(t) =

r∑
i=1

2n∑
j=1

µi(ξ(t))µ̃j(θ(t))(Cijx(t) +Diju(t))

(2)

with Xi(.), for X ∈ {A, B, C, D}, are matrices functions
respectively of dimensions Rnx×nx , Rnx×nu , Rm×nx and
Rm×nu . The functions µi(t) represent the weights of the
submodels (Ai,Bi, Ci,Di) in the global model and satisfy the
convex sum property:

r∑
i=1

µi(t) = 1,

r∑
i=1

µ̃i(t) = 1∀t (3)

Note that if the weighting functions µi(t) and µ̃i(t) are
state or time-varying parameter dependent, they are called
weighting functions with unmeasurable premise variables; in
the same way, if they are input or output dependent (or the state
and the parameters are known) they are referred as weighting
functions with measurable premise variables.

2.2. Interval Multiple Models Representation

The unknown system states estimation is one of the most
challenging and fundamental problem in many engineering
fields, where the model uncertainty represents an additional
difficulty to the model complexity. To overcome these
kinds of problems and estimate the unknown states in the

presence of large and fluctuating disturbances (parameter
and/or model uncertainties), a new class of estimators have
been developed recently known as set-membership state
estimators and interval observers [11].

Interval observer is a class of observers that are used
to evaluate the actual state of the dynamic process, such
techniques are mainly based on guaranteed bounds method.
It consists of an auxiliary dynamic system providing an upper
estimation and a lower estimation for solutions of the system
under consideration using the assumptions that the initial states
conditions and uncertain quantities are unknown with known
bounds. Such an approach can be used to deal with significant
disturbances and provide component-wise information on
possible solutions [11].

In the present contribution, based on [4], the uncertainty
are modeled by means of interval parameters. Uncertainties
affecting the parameters of the MM are taken into account by
considering the lower and upper bounds of the matrices [Aij ]
where the interval matrices [Aij ] characterize the (i, j)th local
model.

For a linear output, the Interval Multiple Model (IMM)
representation of a nonlinear system (1) is given by:
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 ẋ(t) =

r∑
i=1

2n∑
j=1

µi(ξ(t))µ̃j(θ(t))([Aij ]x(t) + Biju(t))

y(t) = Cx(t)

(4)

The lower and upper bounds of the matrices [Aij ] are respectively defined by:
Aij = Ai +

n∑
k=1

θ
σkj
k Aik

Aij = Ai +

n∑
k=1

θ
σkj
k Aik

(5)

where:

Ai=

 ai11 . . . ai1nx

ai21
. . .

ainx1 . . . ainxnx

 , Ai=

 ai11 . . . ai1nx

ai21
. . .

ainx1 . . . ainxnx

 (6)

and Aij is the matrix that characterizes the influence of the parameter θj on the submodel i.
Since the bounds ailm, ailm, θj and θj are assumed to be known, the matrices [Aij ] are written as:

[Aij ] = Anij +

nx∑
l=1

nx∑
m=1

el[f
i
lm]eTm +

n∑
k=1

nx∑
l=1

nx∑
m=1

el[f
ijk
θ,lm]eTm (7)

where Anij = Ain +

n∑
k=1

θ
σkj
k Aik , Ain and θ

σkj
k Aik represent the nominal system matrices where no uncertainties are taken into

account. ei refers to the vector where the element of coordinate i is equal to 1 and 0 elsewhere. The terms [f ilm] and [f ij
k

θ,lm]
represent respectively the input, output or modeling and parameters uncertainties in terms of interval width, such that:

|[f ilm]| ≤ δilm, δilm = ailm − ailm

|[f ijkθ,lm]| ≤ δijkθ,lm, δ
ijk
θ,lm = (θθ,lm)

σkj
k Aik − (θθ,lm)

σkj
k Aik

(8)

3. Observer Design

3.1. Measurable Premise Variables

Consider first the case of measurable (or known) premise variables. Let us define the following Luemberger observer for the
IMM system (4):  ˙̂x(t) =

r∑
i=1

2n∑
j=1

µi(ξ(t))µ̃j(θ(t))(Anij x̂(t) + Biju(t) + Lij(y(t)− ŷ(t)))

ŷ(t) = Cx̂(t)

(9)

The objective is to compute gains Lij ∈ Rnx×m such that
the state estimation error ex(t) = x(t)− x̂(t) is asymptotically
stable and to characterize the error convergence domain.

To this end, based on the Lyapunov theory, LMI conditions

are derived to compute the gains Lij in order that the error be
quadratically stable and remains into a predefined set.

From (4), (7) and (9), the state estimation error dynamics
can be calculated as:

ėx(t) =

r∑
i=1

2n∑
j=1

µi(ξ(t))µ̃j(θ(t))((Anij − LijC)ex(t) +

(
nx∑
l=1

nx∑
m=1

el[f
i
lm]eTm +

n∑
k=1

nx∑
l=1

nx∑
m=1

el[f
ijk
θ,lm]eTm

)
x(t)) (10)
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Considering a quadratic Lyapunov function V (t) = eTx (t)Pex(t), the error is asymptotically stable if there exists a symmetric
positive matrix P = PT > 0 and matrices Lij , i = 1, . . . , r, j = 1, . . . , 2n such that:

V̇ (t) =

r∑
i=1

2n∑
j=1

µi(ξ)µ̃j(θ)
(
eTx (t)S(((Anij)TP − CTRTij))ex(t)

+S

(
nx∑
l=1

nx∑
m=1

eTx (t)Pel

(
[f ilm] +

n∑
k=1

[f ijkθ,lm]

)
eTmx(t)

))
< 0

(11)

with S(M) = M +MT and Rij = PLij .
In the proof of proposition 1, it will be shown that V̇ (t) ≤ −ε||ex||22 + γ. A necessary stability condition is then given in the

next proposition:
Proposition 1: The stability condition V̇ (t) < 0 (11) is satisfied if Zij < 0

and
‖ ex ‖22>

γ
ε

(12)

with

Zij = S((Anij)TP − CTRTij) + PEΩ−1i ETP +

n∑
k=1

PE(Ωjkiθ )−1ETP (13)

ε = min
i=1:r, j=1:2n

λmin(−Zij) > 0 (14)

and

γ = maxi=1:r,j=1:2n ||x||22

(
E∆iFΩiF∆T

i E
T +

n∑
k=1

E∆jk
iθ FΩjθF (∆jk

iθ )TET

)
(15)

Proof Applying lemma 1:
Lemma 3.1. Consider two matrices X and Y with appropriate dimensions. For any positive scalars λ1 and λ2, the following

property is verified:

−λ1XTX + λ−11 Y TY ≤ XTY + Y TX ≤ λ2XTX + λ−12 Y TY (16)

S

(
nx∑
l=1

nx∑
m=1

eTx (t)Pel

(
[f ilm] +

n∑
k=1

[f ijkθ,lm]

)
eTmx(t)

)
can be bounded by:

S

(
nx∑
l=1

nx∑
m=1

eTx (t)Pel

(
[f ilm] +

n∑
k=1

[f ijθ,lm]

)
eTmx(t)

)
≤

nx∑
l=1

nx∑
m=1

λilm(δilm)2xT (t)eme
T
mx(t) +

nx∑
l=1

nx∑
m=1

(λilm)−1eTx (t)Pele
T
l Pex(t)

+

n∑
k=1

nx∑
l=1

nx∑
m=1

λijkθ,lm(δijkθ,lm)2xT (t)eme
T
mx(t) +

n∑
k=1

nx∑
l=1

nx∑
m=1

(λijkθ,lm)−1eTx (t)Pele
T
l Pex(t)

(17)

In order to simplify the notation and transform the double sum in matrices product, define:

∆i = diag(δi11 . . . δ
i
nx1δ

i
12 . . . δ

i
nx2 . . . δ

i
1nx . . . δ

i
nxnx)

∆jk
iθ = diag(δijkθ,11 . . . δ

ijk
θ,nx1

δijkθ,12 . . . δ
ijk
θ,nx2

. . . δijkθ,1nx . . . δ
ijk
θ,nxnx

)

Ωi = diag(λi11 . . . λ
i
1nxλ

i
12 . . . λ

i
nx2 . . . λ

i
nx1 . . . λ

i
nxnx)

Ωjkθ,i = diag(λijkθ,11 . . . λ
ijk
θ,1nx

λijkθ,12 . . . λ
ijk
θ,nx2

. . . λijkθ,nx1 . . . λ
ijk
θ,nxnx

)

E = (Inx . . . Inx), E ∈ Rnx×n2
x

(18)
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where diag(M1, . . . ,Mn) refers to a block diagonal matrix with the elements M1, . . . ,Mn on its diagonal.
The permutation matrix F is also introduced, such that:

FΩiF = diag(λi11 . . . λ
i
nx1λ

i
12 . . . λ

i
nx2 . . . λ

i
1nx . . . λ

i
nxnx) (19)

The same transformation is applied to Ωjθ.
The stability condition V̇ (t) < 0 can be expressed as the following inequality:

r∑
i=1

2n∑
j=1

µi(ξ(t))µ̃j(θ(t))(e
T
x (t)(S((Anij)TP − CTRTij) + PEΩ−1ETP

+

n∑
k=1

PE(Ωjkθ,i)
−1ETP )ex(t) + xT (t)(E∆iFΩiF∆T

i E
T +

n∑
k=1

E∆j
iθFΩjkθ,iF (∆jk

iθ )TET )x(t)) < 0

(20)

Since x(t) is bounded x(t) ∈ [x, x], then xT (t)(E∆iFΩiF∆T
i E

T +

n∑
k=1

E∆jk
iθ FΩjkiθ F (∆jk

iθ )TET )x(t) can be bounded by

||x||22(E∆iFΩiF∆T
i E

T+

n∑
k=1

E ∆jk
iθ F Ωjkiθ F (∆jk

iθ )TET ).

Condition (20) is now written:

r∑
i=1

2n∑
j=1

µi(ξ(t))µ̃j(θ(t))(e
T
x (t)Zijex(t) + ||x||22(E∆iFΩiF∆T

i E
T +

n∑
k=1

E∆jk
iθ FΩjkiθ F (∆jk

iθ )TET )) < 0 (21)

with

Zij = S((Anij)TP − CTRTij) + PEΩ−1i ETP +

n∑
k=1

PE(Ωjkiθ )−1ETP (22)

Let us define

ε = min
i=1:r, j=1:2n

λmin(−Zij) (23)

γ = maxi=1:r,j=1:2n ||x||22

(
E∆iFΩiF∆T

i E
T +

n∑
k=1

E∆jk
iθ FΩjθF (∆jk

iθ )TET

)
(24)

According to Lyapunov stability theory, V̇ (t) < −ε ‖ ex ‖22 +γ. It follows that V̇ (t) < 0 if Zij < 0
and

‖ ex ‖22>
γ
ε

(25)

which means that ex is uniformly bounded and converges to a small origin-centered ball of radius
√

γ
ε .

Proposition 2: The state estimation error ex is stable and converges to an origin-centered ball of radius
√

γ
ε bounded by β if

there exists P = PT > 0, Rij , Ω, Ωkθ > 0 solutions of the following optimization problem

min
i=1,...,r, j=1,...,2n

β (26)

s.t. (
Zij I
I −βI

)
< 0 (27)

with:

Zij =

n∑
k=1

 (Anij)TP + PAnij − CTRTij −RijC PE PE
∗ −Ωi 0

∗ ∗ −Ωjkiθ

 (28)
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and

||x||22

(
E∆iFΩiF∆T

i E
T +

n∑
k=1

E∆jk
iθ FΩjkiθ F (∆jk

iθ )TET

)
< β (29)

for i = 1, . . . , r, j = 1, . . . , 2n.
The observer gains (9) are then given by Lij = P−1Rij , i = 1, . . . , r, j = 1, . . . , 2n.
Proof Applying a Schur’s complement, Zij < 0 is equivalent to solve the following LMIs:

n∑
k=1

 (Anij)TP + PAnij − CTRTij −RijC PE PE
∗ −Ωi 0

∗ ∗ −Ωjkiθ

 < 0 (30)

for i = 1, . . . , r, j = 1, . . . , 2n. The observer gain are then given by Lij = P−1Rij .
The objective is now to minimize the radius

√
γ
ε .

Let us consider a positive scalar β, such that:

||x||22

(
E∆iFΩiF∆T

i E
T +

n∑
k=1

E∆jk
iθ FΩjkiθ F (∆jk

iθ )TET

)
< β (31)

(
Zij I
I −βI

)
< 0 for i = 1, . . . , r, j = 1, . . . , 2n (32)

From (32) we get:

(1/β) I < −Zij , i = 1, . . . , r, j = 1, . . . , 2n (33)

implying that all the eigenvalues of (−Zij) are larger that 1/β.
As a consequence 1/β < ε holds.

Then, if γ < β and ε > 1/β, it implies that the radius
√

γ
ε

is also bounded by β, so minimizing β implies to minimize the
radius of the convergence origin-centered ball, which ends the
proof.

3.2. Unmeasurable Premise Variables

As mentioned in the previous section, although the
polytopic transformation may leads to MM with unmeasurable

premise variables, most of the works on MM systems are
devoted to models with known premise variables. In this
section, we consider the case of unmeasurable premise
variables. As for the measurable (known) premise variables
case, an IMM is first proposed. The problem that appears here,
in addition to the uncertainties, is the joint state and parameter
estimation, since the premise variables are unmeasurable and
depend on the state and parameters that need to be estimated.

Let us define the following joint state and parameter
observer for the considered ITS system (4):



˙̂x(t) =

r∑
i=1

2n∑
j=1

µi(ξ̂(t))µ̃j(θ̂(t))(Anij x̂(t) + Biju(t) + Lij(y(t)− ŷ(t)))

˙̂
θ(t) =

r∑
i=1

2n∑
j=1

µi(ξ̂(t))µ̃j(θ̂(t))(Kij(y(t)− ŷ(t))− αij θ̂(t))

ŷ(t) = Cx̂(t)

(34)

The objective is to find gains Lij ∈ Rnx×m, Kij ∈ Rn×m
and αij ∈ Rn×n such that the estimation errors ex(t) =

x(t) − x̂(t) and eθ(t) = θ(t) − θ̂(t) are asymptotically stable
and bounded. To ensure this objective, LMI conditions based
on the Lyapunov theory are given.

The state estimation error dynamics cannot be easily
computed directly since the premise variables are
unmeasurable and depend on the state and parameters that
need to be estimated. To overcome this difficulty, the state
equation (4) is rewritten as follows:

ẋ(t) =

r∑
i=1

2n∑
j=1

(µi(ξ̂(t))µ̃j(θ̂(t))([Aij ]x(t) + Biju(t))

+(µi(ξ(t))µ̃j(θ(t))− µi(ξ̂(t))µ̃j(θ̂(t)))([Aij ]x(t) + Biju(t)))

(35)
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This form allows a better comparison of x(t) with x̂(t) since µi(ξ̂(t))µ̃j(θ̂(t)) not only appears in (34) but also in (35). Let us
define:

∆A(t) =

r∑
i=1

2n∑
j=1

(µi(ξ(t))µ̃j(θ(t))− µi(ξ̂(t))µ̃j(θ̂(t)))[Aij ]

= (A+ F)ΣA(t)EA

(36)

and

∆B(t) =

r∑
i=1

2n∑
j=1

(µi(ξ(t))µ̃j(θ(t))− µi(ξ̂(t))µ̃j(θ̂(t)))Bij

= BΣB(t)EB

(37)

with

A =
[
A11 . . . Ar2n

]
,F =

[
F11 . . . Fr2n

]
,

B =
[
B11 . . . Br2n

]
Σ(t) = diag(γ11(t), . . . , γr2n(t)),

γij(t) = µi(x(t))µ̃j(θ(t))− µi(x̂(t))µ̃j(θ̂(t))

EA =
[
Inx . . . Inx

]T
, EB =

[
Inu . . . Inu

]T
Fij =

nx∑
l=1

nx∑
m=1

el[f
i
lm]eTm +

n∑
k=1

nx∑
l=1

nx∑
m=1

el[f
ijk
θ,lm]eTm

(38)

Thanks to the convex sum property, we also have

−1 ≤ γij(t) ≤ 1 (39)

which implies from definitions (38)

ΣTA(t)ΣA(t) ≤ I, ΣTB(t)ΣB(t) ≤ I (40)

Using (36) and (37), the system (35) is then written as:

ẋ(t) =

r∑
i=1

2n∑
j=1

µi(ξ̂(t))µ̃j(θ̂(t))(([Aij ] + ∆A(t))x(t) + (Bij + ∆B(t))u(t)) (41)

From equations (41), (7) and (34), the dynamics of the state estimation error is given by

ėx(t) =

r∑
i=1

2n∑
j=1

µi(ξ̂(t))µ̃j(θ̂(t))
(
(Anij − LijC)ex(t) + (∆A(t) + Λ)x(t) + ∆B(t)u(t)

)
(42)

with:

Λ =

nx∑
l=1

nx∑
m=1

el[f
i
lm]eTm +

n∑
k=1

nx∑
l=1

nx∑
m=1

el[f
ijk
θ,lm]eTm

Define the parameter estimation error eθ(t) as

eθ(t) = θ(t)− θ̂(t) (43)

From the observer definition (34), the dynamics of this error is given by

ėθ(t) =

r∑
i=1

2n∑
j=1

µi(ξ̂(t))µ̃j(θ̂(t))
(
θ̇(t)−KijCex(t) + αijθ(t)− αijeθ(t)

)
(44)
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Let us first consider the state estimation error ex(t). Considering a quadratic Lyapunov function Vx(t) = eTx (t)Pxex(t), the
error is asymptotically stable if there exists a symmetric positive matrix Px = PTx > 0 ∈ Rnx×nx such that:

V̇x(t) =

r∑
i=1

2n∑
j=1

µi(ξ(t))µ̃j(θ(t))
(
eTx (t)S(((Anij)TP − CTRTij))ex(t)

+S
(
xT (t)(∆AT (t) + ΛT )Pxex(t)

)
+ S

(
uT (t)∆BT (t)Pxex(t)

)
< 0

(45)

As in the previous section, it will be shown that V̇x(t) ≤ −εx||ex||2 + γx. A necessary stability condition is then given in the
next proposition.

Proposition 3: The stability condition V̇x(t) < 0 (45) is verified if
Zijx < 0
and

‖ ex ‖22>
γx
εx

(46)

with

Zijx = S((Anij)TP − CTRTij) + PEΩ−1ETP +

n∑
k=1

PE(Ωjkθ,i)
−1ETP

+λ−1A P (A+ Fδ)(A+ Fδ)TP + λ−1B PBBTP
(47)

εx = min
i=1:r, j=1:2n

λmin(−Zijx) (48)

and

γx = maxi=1:r,j=1:2n(||x||22(E∆iFΩiF∆T
i E

T +

n∑
k=1

E∆jk
θiFΩjkθiF (∆jk

θi )
TET + λAE

T
AEA) + ||u||22λBETBEB) (49)

Proof Applying lemma 3.1 and basing on the same reasoning as in the previous subsection (x(t) ∈ [x, x], u(t) ∈ [u, u]), the
following terms of the time derivative of the Lyapunov function (45) are bounded as follows:

1.

S
(
xT (t)ΛTPxex(t)

)
≤

nx∑
l=1

nx∑
m=1

λilm(δilm)2xT (t)eme
T
mx(t) +

nx∑
l=1

nx∑
m=1

(λilm)−1eTx (t)Pele
T
l Pex(t)

+

n∑
k=1

nx∑
l=1

nx∑
m=1

λijkθ,lm(δ
ijk
θ,lm)2xT(t)eme

T
mx(t) +

n∑
k=1

nx∑
l=1

nx∑
m=1

(λijkθ,lm)−1eTx (t)Pele
T
l Pex(t)

(50)

2. From (36) and lemma 3.1, S
(
xT (t)∆AT (t)Pxex(t)

)
can be bounded by:

S
(
xT (t)∆ATPxex(t)

)
≤ λAxT (t)ETAΣTA(t)ΣA(t)EAx(t) + λ−1A eTx (t)P (A+ F)(AT + FT )Pex(t) (51)

From the convex sum property, ΣTA(t)ΣA(t) ≤ I , which leads to:

λAx
T (t)ETAΣTA(t)ΣA(t)EAx(t) ≤ λAxT (t)ETAEAx(t) (52)

The term λ−1A eTx (t)P (A+ F)(AT + FT )Pex(t) can also be bounded as:

λ−1A eTx (t)P (A+ F)(AT + FT )Pex(t) ≤ λ−1A eTx (t)P (A+ Fδ)(AT + FTδ )Pex(t) (53)

where Fδ is defined as:

Fδ =
[

(F11)δ . . . (Fr2n)δ
]

(54)

with

(Fij)δ =

nx∑
l=1

nx∑
m=1

elδ
ijk
θ,lme

T
m +

n∑
k=1

nx∑
l=1

nx∑
m=1

elδ
ijk
θ,lme

T
m (55)
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3.
S
(
uT (t)∆BT (t)Pxex(t)

)
≤ λBuT (t)ETB(t)EBu(t) + λ−1B eTx (t)PBBT (t)Pex(t) (56)

Considering definitions (18), the Lyapunov function derivative V̇x(t) (45) is then bounded by:

V̇x(t) ≤
r∑
i=1

2n∑
j=1

µi(ξ̂(t))µ̃j(θ̂(t))(e
T
x (t)(S((Anij)TP − CTRTij) + PEΩ−1ETP

n∑
k=1

PE(Ωjkθ,i)
−1ETP

+λ−1A P (A+ Fδ)(A+ Fδ)TP + λ−1B PBBTP )ex(t)) + xT (t)(E∆iFΩiF∆T
i E +

n∑
k=1

E∆jk
θiFΩjkθiF (∆jk

θi )
TE

+λAE
T
AEA))x(t) + λBu

T (t)ETBEBu(t)

(57)

Since x(t) and u(t) are bounded as x(t) ∈ [x, x], u(t) ∈ [u, u], V̇x(t) is bounded by:

V̇x(t) ≤
r∑
i=1

2n∑
j=1

µi(ξ̂(t))µ̃j(θ̂(t))(e
T
x (t)Zijxex(t) + ||x||22(E∆iFΩiF∆T

i E

+

n∑
k=1

E∆jk
θiFΩjkθiF (∆jk

θi )
TE + λAE

T
AEA)) + ||u||22λBETBEB

(58)

with

Zijx = S((Anij)TP − CTRTij) + PEΩ−1ETP +

n∑
k=1

PE(Ωjkθ,i)
−1ETP+

λ−1A P (A+ Fδ)(A+ Fδ)TP + λ−1B PBBTP
(59)

According to Lyapunov stability theory, ex is uniformly bounded and converges to a small origin-centered ball of radius
√

γx
εx

bounded by βx s.t.

(||x||22(E∆iFΩiF∆T
i E

T +

n∑
k=1

E∆jk
θiFΩjkθiF (∆jk

θi )
TET + λAE

T
AEA) + ||u||22λBETBEB)i=1,...,r,j=1,...,2n < βx (60)

Second point, we consider the parameter estimation error eθ(t). Considering a quadratic Lyapunov function
Vθ(t) = eTθ (t)Pθeθ(t), the error is asymptotically stable if there exists a symmetric positive matrix Pθ = PTθ > 0 ∈ Rn×n such
that:

V̇θ(t) =

r∑
i=1

2n∑
j=1

µi(ξ̂(t))µ̃j(θ̂(t))(−eTθ (t)S(R2
θij)eθ(t) + S(eTθ (t)Pθ θ̇(t))− S(eTθ (t)R1

θijCėx(t))

+S(eTθ (t)R2
θijθ(t))) < 0

(61)

where R1
θij = PθKij and R2

θij = Pθαij .
Proposition 4: The stability condition V̇θ(t) < 0 (61) is verified if:

Zijθ < 0
and

‖ eθ ‖22>
γθ
εθ

(62)

with:

Zijθ = −R2
θij − (R2

θij)
T + λ−11θ PθPθ + λ−12θ R

1
θij(R

1
θij)

T + λ−13θ R
2
θij(R

2
θij)

T (63)

Let us define

εθ = min
i=1:r, j=1:2n

λmin(−Zijθ) (64)

and

γθ = maxi=1:r,j=1:2n(λ1θ||θ̇||22 + λ2θC
TCβ2

x + λ3θ||θ||22) (65)
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Proof Applying lemma 3.1, V̇θ(t) can be bounded by:

V̇θ(t) ≤
r∑
i=1

2n∑
j=1

µi(ξ̂(t))µ̃j(θ̂(t))(e
T
θ (t)(R2

θij − (R2
θij)

T + λ−11θ PθPθ + λ−12θ R
1
θij(R

1
θij)

T

+λ−13θ R
2
θij(R

2
θij)

T )eθ(t) + λ1θ θ̇
T (t)θ̇(t) + λ2θe

T
x (t)CTCex(t) + λ3θθ

T (t)θ(t)

(66)

since θ(t), ex(t) and θ̇(t) are bounded θ(t) ∈ [θ, θ], ex(t) ∈ [−βx, βx] and θ̇(t) ∈ [θ̇, θ̇]. The inequality (66) is bounded by:

V̇θ(t) ≤
r∑
i=1

2n∑
j=1

µi(ξ̂(t))µ̃j(θ̂(t))(e
T
θ (t)Zijθeθ(t) + λ1θ||θ̇||22 + λ2θC

TCβ2
x + λ3θ||θ||22 (67)

According to Lyapunov stability theory, V̇θ(t) < −εθ ‖ eθ ‖22 +γθ, which means that eθ(t) is uniformly bounded and
converges to a small origin-centered ball of radius

√
γθ
εθ

bounded by βθ s.t.

((λ1θ||θ̇||22 + λ2θC
TCβ2

x + λ3θ||θ||22))i=1,...,r,j=1,...,2n < βθ (68)

To sum up, the state and parameter estimation errors are stable and converge to an origin-centered ball of radius
√

γx
εx

and√
γθ
εθ

respectively bounded by βx and βθ if there exists Px = PTx > 0, Pθ = PTθ > 0, Rij , R
1
θij , R

2
θij Ω, Ωkθ > 0, λA > 0,

λB > 0, λ1θ > 0, λ2θ > 0 and λ3θ solutions of the following optimization problems

mini=1,...,r, j=1,...,2n βx
mini=1,...,r, j=1,...,2n βθ

(69)

s.t. (
Zijx I
I −βI

)
< 0 and

(
Zijθ I
I −βI

)
< 0 (70)

with:

Zijx =

n∑
k=1


Z1
ij PE PE P (A+ Fδ) PB
∗ −Ωi 0 0 0

∗ ∗ −Ωjkiθ 0 0
∗ ∗ ∗ −λA 0
∗ ∗ ∗ ∗ −λB

 (71)

with Z1
ij = S((Anij)TP − CTRTij)

Zijθ =

 −R2
θij − (R2

θij)
T Pθ R1

θij R2
θij

∗ −λ1θ 0 0
∗ ∗ −λ2θ −λ3θ

 (72)

and

 (||x||22(E∆iFΩiF∆T
i E

T +

n∑
k=1

E∆jk
θiFΩjkθiF (∆jk

θi )
TET + λAE

T
AEA) + ||u||22λBETBEB)i=1,...,r,j=1,...,2n < βx

((λ1θ||θ̇||22 + λ2θC
TCβ2

x + λ3θ||θ||22))i=1,...,r,j=1,...,2n < βθ

(73)

The observer gains (34) are then given by Lij = P−1Rij , Kij = P−1θ R1
θij and αij = P−1θ R2

θij .

4. Example

To illustrate the proposed methodology, let us consider the following system with additive disturbances described by (74){
ẋ(t) = A(θ(t))x(t) + d(t)
y(t) = Cx(t)

(74)
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where x ∈ R2 is the state and

A(θ(t)) =

(
−0.632− 0.8 sin(t) 0.5 cos(3t)
−0.7 cos(2t) 0.3 sin(t)

)
,

C =
(

0 1
) (75)

The input d(t) is defined by d(t) =
(

0.1 + 0.2 sin(0.5t) 0.1 + 0.5 cos(1.5t)
)T

.
First step, let us write the system equations (74) in a MM form. The state equation can be re-written as:

ẋ(t) = A(θ(t))x(t) +
d(t)

x1(t)
x1(t) (76)

Equation (76) is decomposed as the following:

ẋ(t) =

(
a11 + ρ11θ1(t) + ξ1(t) ρ12θ2(t)
ρ21θ3(t) + ξ2(t) ρ22θ1(t)

)
x(t) (77)

with

a11 = −0.632, θ1(t) = sin(t), θ2(t) = cos(3t), θ3(t) = cos(2t)

ξ1(t) = d1(t)
x1(t)

, ξ2(t) = d2(t)
x1(t)

ρ11 = −0.8, ρ12 = 0.5, ρ21 = −0.7, ρ22 = 0.3

For the nonlinearities ξ1(t), ξ2(t) and the time-varying parameters θ1(t), θ2(t) and θ3(t), by applying the above MM
transformation (section 2.1), the nonlinear system (74) is written as:

ẋ(t) =

4∑
i=1

8∑
j=1

µi(x1(t))µ̃j(θ(t))Aijx(t) (78)

with for i = 1, . . . , 4: 

µ1
i (x1(t)) =

ξi(t)− ξ2i
ξ1i − ξ2i

, x1(t) 6= 0

µ1
i (x1(t)) = 1, x1(t) = 0

µ2
i (x1(t)) =

ξ1i − ξi(t)
ξ1i − ξ2i

, x1(t) 6= 0

µ2
i (x1(t)) = 0, x1(t) = 0
ξ1i = max ξi(t)
ξ2i = min ξi(t)

(79)

and for j = 1, . . . , 8 (each submodel j is defined for a triplet (σ1
j , σ

2
j , σ

3
j )):

µ̃j(θ(t)) = µ̃
σ1
j

1 (θ1(t))µ̃
σ2
j

2 (θ2(t))µ̃
σ3
j

3 (θ3(t))

µ̃1
k(θk(t)) =

θk(t)− θ2k
θ1k − θ2k

µ̃2
k(θk(t)) =

θ1k − θk(t)

θ1k − θ2k
Aij = Ai + θ

σ1
j

1 Ai1 + θ
σ2
j

2 Ai2 + θ
σ3
j

3 Ai3
θ1k = max θk(t)
θ2k = min θk(t)

(80)

where σkj is equal to 1 or 2 and indicates which partition of the kth parameter k = 1, 2, 3 (µ̃k
1 or µ̃k

2) is involved in the jth

submodel. The relation between the submodel number j and the σkj index is given by the following equation

j = 22σ1
j + 21σ2

j + 20σ3
j − (21 + 22) (81)

The matrices Aij are defined as follows:
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

Aij = Ai + θ
σ1
j

1 Ai1 + θ
σ2
j

2 Ai2 + θ
σ3
j

3 Ai3

A1 =

(
a11 + ξ11 0
ξ12 0

)
, A2 =

(
a11 + ξ11 0
ξ22 0

)
A3 =

(
a11 + ξ21 0
ξ12 0

)
, A4 =

(
a11 + ξ21 0
ξ22 0

)
Ai1 =

(
ρ11 0
0 ρ22

)
, Ai2 =

(
0 ρ12
0 0

)
,

Ai3 =

(
0 0
ρ21 0

)
(82)

It is assumed that the exogenous input d(t) is subject to uncertainties but remains bounded such that:(
d1m(t)
d2m(t)

)
≤ d(t) =

(
d1(t)
d2(t)

)
≤
(
d1M (t)
d2M (t)

)
(83)

with: 

−0.5 ≤ d1m(t) ≤ −0.1

0.3 ≤ d1M (t) ≤ 0.7

−1.1 ≤ d2m(t) ≤ −0.1

0.1 ≤ d2M (t) ≤ 1.1

(84)

Our objective is to synthesis an observer x̂1(t) for x1(t) (since the second state x2(t) is measured) by applying the above
proposed approach. Solving the proposed optimization problem under LMIs constraints, a state observer with unmeasurable
premise variable (x1(t)) is designed.

In figure 1 are depicted respectively the system state x1(t) (subject to uncertainties) with its lower and upper width and its
estimate x̂1(t).

Figure 1. System state x1(t) with its upper and lower width and its estimate x̂1(t).

As the figure 1 shows, the state x1(t) is well estimated with the proposed approach. The calculated gains are equal to:
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L1 =

(
3.81
73.01

)
, L2 =

(
−1.83
73.36

)
, L3 =

(
3.78
71.72

)
, L4 =

(
−1.52
71.72

)
(85)

Note that for computational reasons, the gains Lij , i =
1, . . . , 4 and j = 1, . . . , 8 were set equal to Li (meaning that
Li1 = Li2 = · · · = Li8 = Li).

5. Conclusion
This work deals is devoted to a Multiple Models observer

design for nonlinear time-varying parameters subject to
uncertainties. The uncertain nonlinear system is represented
in an IMM form and the observer is designed based on
the nominal system. It is the first time that the observer
design is treated in such a way. The proposed approach
gives stability conditions for the estimation errors in terms
of LMIs constraints and enables to characterize and optimize
a reachable regions for both the states and time-varying
parameters.
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Interval Estimation Methods for Multiagent Systems, in
IEEE Systems Journal, 17 (2): 1843-1852.

[4] Bezzaoucha Rebai, S. “an Interval Multiple Models
Approach for Uncertain Nonlinear Systems Estimation,”
IECON, IEEE Industrial Electronics Society Conference,
Brussels, Belgium, October 2022.

[5] Le, V. T. H., Stoica, C., Alamo, T., Camacho, E.F. and
Dumur, D., Zonotopes: from guaranteed state estimation
to Control, Hoboken: NJ, USA, Wiley, 2013.

[6] Scott, K. , Raimondo, D. M., Marseglia, G. R. and Braatz,
R. D. (2016). Constrained zonotpes: a new tool for set-
based estimation and fault detection. Automatica 69: pp
126-136.

[7] Blanchini, F. and Miani, S. Set-theoritic Methods in
Control, Springer Nature switzerland AG, 2008.

[8] Rego, B. S. and Raffo, G. V. (2019). Suspended load path
tracking control using a tilt-rotor UAV based on zonotopic

state-estimation. Journal of The Franklin Inst. vol 356
(4): 1695-1729.

[9] Lin, H., Zhai, G. and Antsalkis, P. “Set-valued
observers for a class of discrete-time uncertain systems
with persistent disturbances”, in American Control
conference, Denver, Colorado, USA, 2003.

[10] Raissi, T., Efimov, D., and Zolghadri, A. (2012). Interval
state estimation for a class of nonlinear systems. IEEE
Transactions on Automatic Control, 51 (1): 260-265.

[11] Khan, A., Xie, W., Zhang, B. and Liu, L-W. (2021)
A survey of interval observers design methods and
implementation for uncertain systems Author links open
overlay panel. Journal of the Franklin Institute, 358 (6):
3077-3126.

[12] Bezzaoucha, S., Marx, B., Maquin, D. and Ragot,J.
(2013). Nonlinear joint state and parameter estimation:
Application to a wastewater treatment plant. Control
Engineering Practice, 21 (10): 1377-1385.

[13] Bezzaoucha, S., Voos, H. and Darouach, M. Book
Chapter Part IV-Chapter 12: A survey on the polytopic
Takagi-Sugeno approach: application to the inverted
pendulum. Book title: The Inverted Pendulum: From
Theory to New Innovations in Control and Robotics.
The Institution of Engineering and Technology IET-
publishing: 283-308, 2017.

[14] Rabehi, D., Meslem, N., Ramdani, N. An LMI approach
to design interval observers for discrete-time linear
switched systems. hal-02517130, Preprint submitted on
24 Mar 2020.

[15] Marouani, G.,Dinh, T. N.,Raissi, T. and Messaoud,
H. “Interval observers design for discrete-time linear
switched systems”. 2018 European Control Conference
(ECC) June 12-15. Limassol, Cyprus, 2018.

[16] Pati, T. , Khajenejad, M., Daddala, S. P., and Yong, S.
Z. “L1-Robust Interval Observer Design for Uncertain
Nonlinear Dynamical Systems”. EEE Control Systems
Letters paper presented at 2022 IEEE Conference on
Decision and Control (CDC) December 6-9. Cancun,
Mexico, 2022.

[17] Pourasghar, M., Puig, V. and Ocampo-Martinez, C.
“Robust Zonotopic Observer Design: Interval Observer
versus Set-membership Approaches,” On the 4th
Conference on Control and Fault Tolerant Systems
(SysTol), Casablanca, Morocco, 2019.


